

Key Enablers for Migration to Timing Cloud Synchronization Distribution in Optical Transport Networks

Jon Baldry

2nd November 2021

5G Drives High Accuracy Synchronization Requirements

See <u>Sync e-book</u> in ITSF website downloads section

Example Causes of Asymmetry in Optical Transport

See <u>Sync e-book</u> in ITSF website downloads section

Contributor	Fiber	Dispersion Compensation	Coherent Optics	OTN Mapping	IP Routing and Ethernet Switching
Source	Asymmetry in fiber lengths, jumper cables, etc. 2.5 ns/m (vs 5 ns/m latency)	Random asymmetry in DCF used in each direction	FIFO buffers in DSP Varies on restarts	Deep FIFO buffers in OTN mapping Varies on restarts	Traffic/buffering asymmetry and timestamping inaccuracy
Impact	Large but static	Very large but static	Varying and random	Large and random	Tight requirements to control impact
Range	Fixed cTE of ±5 to 1000+ ns	Fixed cTE of ±5 to 20,000 ns	Random cTE of ±20 to 130 ns on restart	Random cTE of ±20 to 1000 ns on restart	Class A/B/C specifications Max(TE) of 30 to 100 ns cTE of 10 to 50 ns dTE (low-pass filtered) of 10 to 40 ns

Sychronization Distribution Strategies for 5G

2.

In-band delivery of synchronization

- Transponder synchronization performance
- Coherent synchronization performance
- High-performance PTP 1588 and SyncE delivery

Out-of-band delivery of synchronization

- Very high-performance PTP 1588 and SyncE
- Single-fiber CWDM and O/E/L-band overlay
- OTC network elements:
 - T-BC Class D boundary clocks
 - Optical 3R regeneration

Hybrid use of in-band and OTC mechanisms

- Interoperable and interchangeable
- All high-performance 1588 PTP, not proprietary
- Use the appropriate solution for the best fit
 - In-band delivery perfect for metro-access
 - OTC widely used as core distribution

Optical Timing Channel-based Synchronization Distribution

KEY ATTRIBUTES/FEATURES:

- Supports nanosecond-level 5G sync distribution in challenging transport networks
- Class D sync distribution performance over transport
 networks
- Highly reliable and robust timing distribution with advanced resiliency mechanisms
- Extensive range of sync features and functionality
- Broad range of optical layer capabilities
- Broad range of supported network architectures and timing service delivery

Building High-Performance Optical Timing Channels

OPTICAL LAYER CONSIDERATIONS:

- Fiber topology and resiliency Ring, Linear, Tree, Mesh
- Analogue domain many factors to balance:
 - Managing fiber effects asymmetry, non-linear effects, dispersion etc.
 - Optical add/drop ROADM / Fixed add/drop
 - Amplification options EDFA / Raman
 - Bandwidth C Band / C+L Bands
- Optical Timing Channel Toolkit:
 - Timing channel options O/E/L-band
 - Sync/Retiming options High performance T-BC, Integrated T-BC (Router) or optical 3R

SYNC LAYER CONSIDERATIONS:

- High performance boundary clock operation
- vPRTC / Timing cloud architecture
- Demanding performance/feature requirements:
 - Class D cTE within ± 5 ns, max. |TE| <5 ns
 - Hop-by-hop local clock recovery, OCXO holdover
 - Resiliency mechanisms
 - GNSS/Grandmaster options
- Supporting optical layer interoperability:
 - BiDi single fiber working optics
 - Large (up to 14) number of degrees/directions

Optical Layer

Foundation

Creating an OTC2.0-enabled vPRTC/Timing Cloud

OTC2.0-ENABLED vPRTC:

- Provides GNSS-like omnipresent timing, overcoming GNSS security/reliability/accessibility issues
- Uses secure and reliable optical network to deliver highly-accurate timing/synchronization:
 - Predictable, traceability to UTC and PRC
 - Reliable, resilient and secure
 - Highly-accurate
- Flexible and independent
- Every DWDM node capable of delivering timing/synchronization
- Preserves timing budget for access/aggregation networks
- Simplifies timing/synchronization planning and ongoing operations

Key Trends in Sync/Timing Distribution Networks

- 5G driving dedicated wavelength per node
- From hop-by-hop to DWDM sync engineering
- Can deliver 50% improvement in Timing Error

- vPRTC performance to all nodes
- Resilient and robust architecture
- Single OTC provides *bidirectional timing service*

Key Trends in Sync/Timing Distribution Networks

DWDM ACCESS RINGS:

- Sample 9 node access ring, a very typical customer case
- G.8271.1 calculation using G.8273.2 Class B T-BC and optimized DWDM elements with 10 ns cTE
- Max | TE | reduced from ~320ns to ~140ns Infinera^{® 2021 In}

RESILIENT TIMING CLOUD:

- No loss of synchronization, PTP slave is always locked
- Smooth and hitless switch-over between timing masters
- Reverts to same cTE as before incidence

Thank You